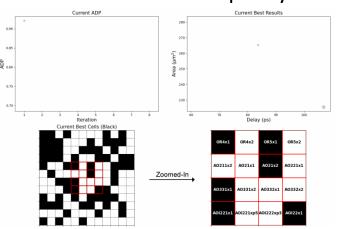
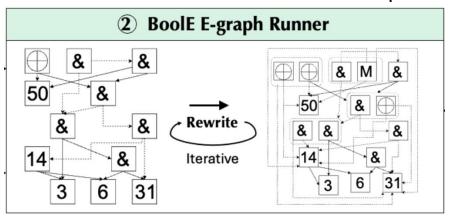
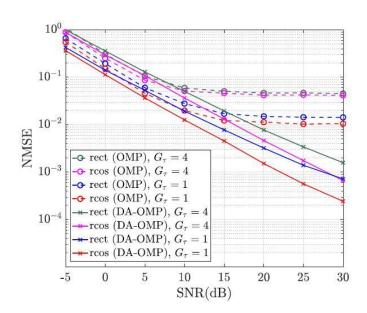

Collaborative Research: SWIFT: Decentralized Intelligent Spectrum Sharing in UAV Networks (DISH-uNET) via Hardware-software Co-design

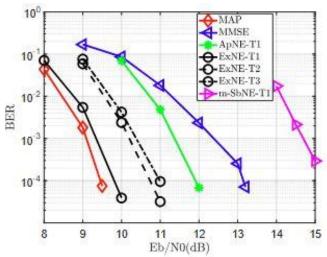
Mingyue Ji (PI, University of Florida), Rong-Rong Chen (Co-PI, University of Utah), Zhangyu Guan (Co-PI, University of Minnesota, Twin Cities) and Cunxi Yu(Co-PI, University of Maryland, College Park)


NSF Award Number: #2229562/2229563


Project Description

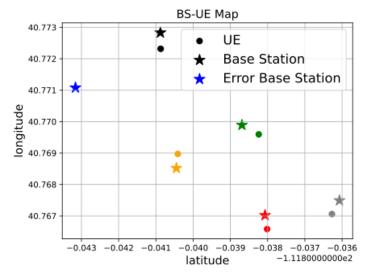
- Develop novel approaches for decentralized intelligent spectrum sharing in mmWave UAV networks (DISH-uNET)
- Achieve high efficiency and resilience based on hardwaresoftware co-design
- 3. Design domain-specific energyefficient systolic accelerators
- Develop novel learning-based transceiver design for high mobility UAVs
- Design new decentralized spectrum sharing multiple access control
- 6. Enable fast adaptation of mobility resilient mmWave beam learning for UAV networks and system prototype

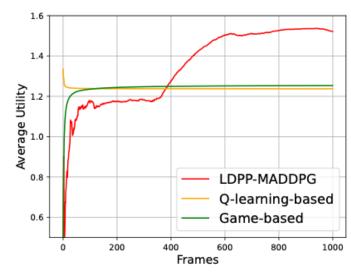

- Thrust 1: Energy-efficient Systolic Accelerator for Simultaneous Real-time ML
 - MapTune: RL-guided Design Flow Optimization for Low-power Chip Design
 - First work to optimize optimize design flow from foundry libraries
 - Demonstrated in various technology nodes from 7nm, 45 nm, 90 nm, 130 nm
 - Technology transfers with two EDA vendors and one chip design vendor
 - Equality Saturation for Hardware Synthesis
 - Novel integration of formal methods with hardware synthesis to push frontiers of optimization runtime vs. quality of results
 - Versatile for mix workloads in targeted SWITF applications
 - Demonstrated quality-of-results over commercial AMD Xilinx FPGA compilers



- Yin, J., Song, Z., Chen, C., Hu, Q., & Yu, C. (2025). BoolE: Exact Symbolic Reasoning via Boolean Equality Saturation. *DAC'25* [*Best Paper Finalists*].
- Liu, M., Robinson, D., Li, Y., & Yu, C. (2024, October). MapTune: Advancing ASIC Technology Mapping via Reinforcement Learning Guided Library Tuning. ICCAD'24.

- Thrust 2: Transceiver Design for High Mobility UAV Communication
 - Proposed a delay-aware orthogonal matching pursuit (DA-OMP) algorithm and a windowed dictionary design to enhance delay—Doppler domain channel estimation by mitigating fractional Doppler effects.
 - Developed an extrinsic neural network equalizer (ExNE) and its meta-learning extension (Meta-ExNE) for turbo equalization over stationary and timevarying ISI channels, achieving superior performance over MMSE and APP-based neural network equalizers.




Publications:

- ``Windowed Dictionary Design for Delay-Aware OMP Channel Estimation under Fractional Doppler", H. Wang, X. Huang, R.-R. Chen and Arman Farhang, Proceedings of IEEE International Conference on Communications, ICC'2025.
- ``Extrinsic Neural Network Equalizer for Inter-Symbol-Interference Channels'', X. Huang, J. Cho, K. Hashemizadeh, and R.-R. Chen, submitted to IEEE Transactions on Communications, 2025.

- Thrust 3: Bridging Lyapunov Optimization
 Framework, Game Theory, and Reinforcement
 Learning in Decentralized Spectrum Sharing
 - Propose a distributed continuous power allocation scheme based on a modified version of MADDPG that is tailored for the distributed multiple-agent setting.
 - The proposed scheme employs a centralized-training-distributed-execution framework
 - Effectively integrate the MADDPG into the Lyapunov optimization framework to achieve performance guarantees.
 - Experiments on POWDER.

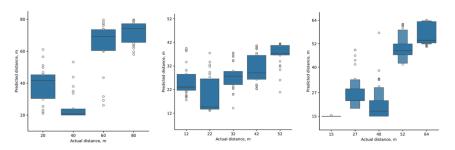
Publications:

- H. Zhang, X. Huang, Z. Guan, R.-R. Chen, A. Farhang and M, Ji, "Deep Reinforcement Learning for Maximizing
 Downlink Spectral Efficiency in Non-Stationary RIS-Aided Multiuser-MISO Systems," in 2025 EW Conferences.
- X. Yao, A. Bhuyan, X. Zhang and M. Ji, "A Novel LDPP-MADDPG Approach for Distributed Power Allocation in mmWave Cellular Networks," in 2025 MILCOM conference (workshop).

• Thrust 4: Mobility-Resilient mmWave Beam Learning and System Prototype

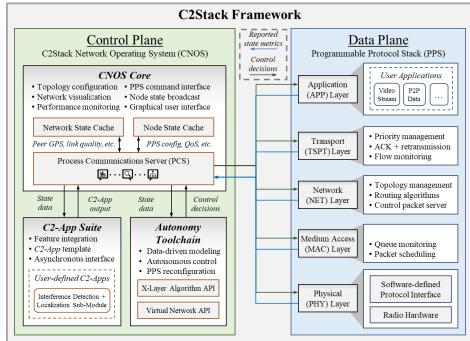
C2Stack: A configurable, extensible protocol stack for Communications and Control in UAV Networks

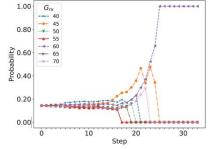
Full-scale prototype of intelligent UAV swarm network protocol

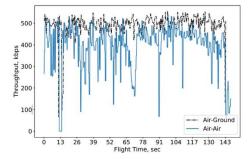

- Joint autonomous network self-configuration and swarm control
- On-board network simulator interface for DT-enabled research

Data Plane - Programmable Protocol Stack (PPS)

- Open-source framework with independent, configurable layers
 - Very few external dependencies, many of which are open-source
- Resilient PHY-layer design
 - DSSS waveform with software-defined control interface


Control Plane – C2Stack Network Operating System (CNOS)


- Global control interface for consolidated control over all layers
- Synchronous monitoring and aggregation of network metrics
- Layer-specific optimization in parallel with network operation



Results of data-driven RF interference distance estimation, based on network traces without dedicated RF sensing capabilities.

Publications: under submission

Selection of optimal PHY-layer parameters Comparison of network throughput in air-ground via data-driven self-configuration (black) and air-air (blue) link configurations

Thank you