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Project Description

1. Develop novel approaches for
decentralized intelligent spectrum
sharing in mmWave UAV

networks (DISH-uNET) @;u

2. Achieve high efficiency and 5
resilience based on hardware-
software co-design

3.  Design domain-specific energy- sl A\
efficient systolic accelerators )

4, Develop novel learning-based & 7 i |
transceiver design for high e ik ' {nz Systolic Acc_e.eratoj
mobility UAVs Bl (. | e ko

5. Design new decentralized
spectrum sharing multiple access
control

6. Enable fast adaptation of mobility
resilient mmWave beam learning
for UAV networks and system
prototype



Research Findings

* Thrust 1: Energy-efficient Systolic Accelerator for Simultaneous Real-time ML
 MapTune: RL-guided Design Flow Optimization for Low-power Chip Design
* First work to optimize optimize design flow from foundry libraries
 Demonstrated in various technology nodes from 7nm, 45 nm, 90 nm, 130 nm
e Technology transfers with two EDA vendors and one chip design vendor
Equality Saturation for Hardware Synthesis
* Novel integration of formal methods with hardware synthesis to push frontiers of
optimization runtime vs. quality of results
* \Versatile for mix workloads in targeted SWITF applications
 Demonstrated quality-of-results over commercial AMD Xilinx FPGA compilers
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* Yin,J, Song, Z.,Chen, C., Hu, Q., & Yu, C. (2025). BoolE: Exact Symbolic Reasoning via Boolean Equality

Saturation. DAC’25 [Best Paper Finalists].
* Liu, M., Robinson, D, Li, Y., & Yu, C. (2024, October). MapTune: Advancing ASIC Technology Mapping via Reinforcement

Learnine Guided Librarv Tunine. ICCAD’24.
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Research Findings
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e Thrust 2: Transceiver Design for High Mobility 102 NN N R S
UAV Communication z ,
R e O
* Proposed a delay-aware orthogonal o o =
. . H -G rcos (OMP), G, =1
matching pursuit (DA-OMP) algorithm and o e LI =1
a windowed dictionary design to enhance et AR = 1
delay—Doppler domain channel estimation e S T T
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by mitigating fractional Doppler effects. SNR(dB) i
. . 10‘;‘ g.\l:\r‘
* Developed an extrinsic neural network e
equalizer (ExNE) and its meta-learning b S ’
. S, ExNE-T3
extension (Meta-ExNE) for turbo Al ] A BosenR ]

BER

equalization over stationary and time-
varying ISl channels, achieving superior
performance over MMSE and APP-based
neural network equalizers.
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* “Windowed Dictionary Design for Delay-Aware OMP Channel Estimation under Fractional
Doppler”, H. Wang, X. Huang, R.-R. Chen and Arman Farhang, Proceedings of IEEE International
Conference on Communications, ICC'2025.

 Extrinsic Neural Network Equalizer for Inter-Symbol-Interference Channels", X. Huang, J. Cho,
K. Hashemizadeh, and R.-R. Chen, submitted to IEEE Transactions on Communications, 2025.



Research Findings

* Thrust 3 : Bridging Lyapunov Optimization
Framework, Game Theory, and Reinforcement
Learning in Decentralized Spectrum Sharing

Propose a distributed continuous power
allocation scheme based on a modified
version of MADDPG that is tailored for the
distributed multiple-agent setting.

The proposed scheme employs a
centralized-training-distributed-execution
framework

Effectively integrate the MADDPG into the
Lyapunov optimization framework to
achieve performance guarantees.
Experiments on POWDER.

e Publications:

H. Zhang, X. Huang, Z. Guan, R.-R. Chen, A. Farhang and M, Ji, “Deep Reinforcement Learning for Maximizing
Downlink Spectral Efficiency in Non-Stationary RIS-Aided Multiuser-MISO Systems,” in 2025 EW Conferences.
X. Yao, A. Bhuyan, X. Zhang and M. Ji, “A Novel LDPP-MADDPG Approach for Distributed Power Allocation in
mmWave Cellular Networks,” in 2025 MILCOM conference (workshop).
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Research Findings

e Thrust 4: Mobility-Resilient mmWave Beam Learning and System Prototype
C2Stack: A configurable, extensible protocol stack for Communications and Control in UAV Networks

C2Stack Framework
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